
CloudCrossing BVBA
Dahlialaan 1
2950 Kapellen
Belgium

BULK

BUTLER

BULK Butler
With the PDF Butler Batch add-on it is easy to schedule and start batch jobs.

From the interface you will get a great overview on all runs of the batch.

You can also start or schedule the batch via the buttons on the page

A Batch Info record:

Information on all runs of the batch can be found related to the Batch Info:

A Batch Run record:
A Batch Run will supply the stats and give an overview of any errors occurred:

The Batch errors will be created for every record in error. An example:

Create a BatchInfo:
- Name

- Cron: when scheduling this will indicate when to run. For a single launch, this is not

important

The following are some examples of how to use the expression.

Expression Description

0 0 13 * * ? Class runs every day at 1 PM.

0 0 22 ? * 6L Class runs the last Friday of every month at 10 PM.

0 0 10 ? * MON-FRI Class runs Monday through Friday at 10 AM.

0 0 20 * * ? 2010 Class runs every day at 8 PM during the year 2010.

- Emails: who to notify when batch has ran. Overview and status of batch and possible errors

will be mailed. Leave empty when there is nobody to notify

- SOQL: this is the input data for the batch. This query will select all records that are the

starting point of the context, data selected by the DataSources.

- DocConfig: DocConfig to run for every record returned from the SOQL

- Batch Size: Salesforce will not run all records returned by the SOQL in 1 go. For performance

and governor limits the batch will be split in small parts. It is recommended to set this to

small chunks so that the limits in queries, from the DocConfigs related DataSources, are not

hit and that the transaction of inserting the generated documents remains small. It is not set

that a bigger batch size will run faster than smaller.

We recommend small batch size between 5 and 10.

- Batch Apex Class: An APEX class that implements “cadmus_batch.Batch_ICadmusBatch”. See

further for more information

- Count SOQL: this is normally the same query as in the SOQL field but not selecting and fields

but counting the number of records eg: “SELECT Count() FROM Account”

Make sure that this is a count-query. The Count() function cannot have any parameters.

With bigger batch jobs, you can follow up on the status and see how many records to

process and how many are already done.

- Delivery Option: The Delivery Option from the DocConfig will not be used. Indicate how the

generated documents are saved related to the record.

o ATTACHMENTS

o ATTACHMENTS_OVERWRITE

o FILES

o BASE64

Extending BULK Butler

cadmus_batch.Batch_ICadmusBatch
As everything PDF Butler, the batch is also extensible. We cannot cover all possible use-cases so we

let you extend so it does exactly what you need.

global class YourActionBatch extends cadmus_batch.Batch_ICadmusBatch {

 global Batch_NoActionBatch() {}

 global override void beginExecute(List<sObject> items){

 //Your implementation here

 //This will be executed when the chunk (batch part according to “Batch Size” setting) is

started. The list is the sObjects the SOQL retrieved. To handle these, just cast them to the type you

queried via the SOQL eg: Account acc = (Account)items.get(0);

 }

 global override void inExecuteLoop(sObject item, cadmus_core.ConvertController.ConvertDataModel

data){

 //Your implementation here

 //This will be executed when running through the list of items processed in this batch chunk.

For every record processed, this will be executed.

 //In this part you can set extra information on the ConvertDataModel, eg the Alternative to use:

data.alternativeName = “<YOUR ALTERNATIVE>”

 // To handle the item, just cast them to the type you queried via the SOQL eg: Account acc =

(Account)items;

 }

 global override void endExecute(List<sObject> items,

List<cadmus_batch.Batch_ProcessDocConfigs.DocGenResultData> results){

 //Your implementation here

 //This will be executed when all records in the chunk (batch part according to “Batch Size”

setting) are processed. At this time you can decide what to do with the documents that are generated. Eg

save to another record in SFDC, email, …

 }

 global override void beginFinish(){

 //Your implementation here

 //the batch is finished, you might want to initialize another task, inform users, connect to a

backend system

 }

 global override void endFinish(){

 //Your implementation here

 //the batch is finished and really at the end you want to take an action, you might want to

initialize another task, inform users, connect to a backend system.

 //information on the batch and the status can be retrieved from the Batch Run sObject

 }

}

Anywhere in this class, you can get information from the current batchInfo or batchRun like this:

In the below, we get the Pack Id from the batchInfo:

this.batchInfo.cadmus_batch__Pack__c

In the below, we get the Pack Id from the batchRun:

this.batchRun.cadmus_batch__Docs_To_Process__c

Code example that update a field on the records processed:

global class YourBatchClass extends cadmus_batch.Batch_ICadmusBatch

{

 global override void beginExecute(List<sObject> items) {}

 global override void inExecuteLoop(sObject item,

cadmus_core.ConvertController.ConvertDataModel data) {}

global override void endExecute(List<sObject> items,

List<cadmus_batch.Batch_ProcessDocConfigs.DocGenResultData> results)

{

 List<Opportunity> opps = new List<Opportunity>();

 for(cadmus_batch.Batch_ProcessDocConfigs.DocGenResultData res : results)

 {

 Opportunity opp = (Opportunity) res.item;

 opp.Batch_Process__c=true;

 opps.add(opp);

 }

 update opps;

}

global override void beginFinish() {}

global override void endFinish() {}

}

cadmus_batch.Batch_ProcessController
You might want to call your batch programmatically. This can be done by directly calling into BULK

Butler key controller class.

Methods:

- startBatch(Id batchInfoId): start a batch immediately and run it 1 time. The supplied

batchInfoId is the Id of the BatchInfo record created that holds all information the batch

requires to run.

- schedulebatchMethod(Id batchInfoId): schedule a batch according to the Cron job settings in

the BatchInfo record. The supplied batchInfoId is the Id of the BatchInfo record created that

holds all information the batch requires to run.

Run Pack with BULK Butler
You can also run Packs with BULK Butler, for instance if you want to create multiple documents in 1

go or add some Pre or Post processing eg sent out via email (see that the Batch Size is set to 1).

Make sure the Pack field is on the Page Layout and just pass on a Pack instead of a DocConfig:

Starting a batch from a flow:
When you need to process multiple records when a certain event occurs, you can launch BULK Butler

to run a batch.

With parameters
You want to launch the batch from a flow but want to filter the records processed in the batch in

relation to the record you are working from or a list of records.

This example can be done from any flow but below we will use a record triggered flow.

See the flow below:

The flow uses parameters to pass on and sets these in the Assignment steps

More information on how to add these to the DataSource can be found here:

https://www.pdfbutler.com/academy.html?q=Flow%20Introduced%20variables

1) set the parameter value

in this case we set the a parameter for the AccountId

create the variables in the Flow:

https://www.pdfbutler.com/academy.html?q=Flow%20Introduced%20variables

2) Manage the assignments:

a. Assignments of values: Here we assign the

i. Key: this is the name of the parameter as it will be used in the SOQL for the

Batch Info record

b. Add all variables to the Parameters variable. This implies that you can introduce

multiple variables to be passed on!

3) add a Flow Action:

And configure it

Next is to make sure our Batch Info SOQL uses this variable:

The variable that we used was called “accId”, in the SOQL we must use it by prefixing it with a “:”. So

use this with “:accId” in the SOQL

Using a List of records as variable
The idea is not to add thousands of records to the variable. When you want to process a large

amount of records. The SOQL should select these via a stage, status, checkbox, …

This is for passing a limited number, let’s say 100 records, to the batch for processing.

The variable must look like this: “a061i00000das3tAAA; a061i00000das3tAAA; a061i00000das3tAAA;

a061i00000das3tAAA”

So the values must be split by “; ”. Do not forget to add the space after the semicolon.

In Flow, you can use it like this to set it up:

When looping over the products, every product Id is added to the value of the variable.

When this is the first product, do not add a separator, otherwise … add it.

- Decision

- Add separator

- Add product Id field

